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1 Introduction

My interest in methods of approximation arose while reading an article by Gregory Galperin, ”Playing Pool with π”[1],

where he found a way of approximating π by looking at the number of bounces made by billiards bouncing off each

other and the sides of a pool table. After reading, I was curious to learn how π even popped up in these calculations,

and wondered by which other methods π could be approximated. While doing further research, I stumbled upon the

ideas of incorporating probability in numerical approximation. More specifically, I read of the work of the 18th century

mathematician and naturalist, Georges-Louis Leclerc, Comte de Buffon, which Galperin had actually mentioned within

the prologue of his work as well! I read how specifically he investigated the probability of a needle with some length l,

landing upon on a dividing line separating two parallel planks separated by an equal spacing d, which is seen visually

as such, where the black bars are needles, and the lengths l and d are shown:

Figure 1: Diagram of Buffon’s Variation

Buffon himself actually calculated this probability analytically, making the first initial connection, although not

examined until quite some time after his writings, between probability and numerical approximation. From Buffon’s

work thus, variations of the problem were developed, one of the most similar ones being that of Laplace’s variation.

Given this Buffon’s problem and it’s connection to numerical approximation, I wondered on the practicality and

viability of perhaps using probability to actually measure a value of π, despite Galperin himself saying ”He/she can

easily observe that it takes a lot of drops to get a more or less good precision for π. - no one can guarantee any specific

precision in calculation of with the use of this method.” [1], I wanted to see if this was actually true, and to what

extent it was true. Being quite intrigued on the topic of statistics and probability from my Mathematics Analysis

and Approaches class, I wondered whether by using this acquired knowledge and perhaps my own research, I could

make some insights into probabilistic methods of approximating π, by more specifically examining Buffon’s method

and mentioning it’s variations. So to focus my research, I narrowed down my research question to be: To what extent

does the probabilistic solution of the Buffon problem and it’s variations give insight into approximating π?

2 Buffon’s Problem

In order to determine anything about the viability and practicality of using probabilistic equations to approximate π,

examining the derivation and origin of such an equation could perhaps yield insights into this direction.

Thus consider the experiment as follows. We may drop a needle from some height unto the surface in Figure 1.

We can observe the fall of the needle, and thus also record whether the needle lands on one of the intersections or not.
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(a) Diagram of a Hit (b) Diagram of a Miss

Figure 2: Diagrams of a Hit and a Miss

Since we are interested in observing the probability of the intersection of the needle, we can say that the needles

which intersect are denoted as successes and the ones which don’t to be failures, also noting that the drop of one needle

doesn’t effect the drop of another, hence allowing us to denote them as independent. To quantify these results, let H

be the number of hits, and N be the total number of needles, and so N −H is the number of failures. Since we are

again interested in the probability of intersection, we are namely interested in H, we can call our ’random variable’.

Definition 2.1. A random variable quantifies the concepts of success and failure, such that if we have a random

variable X, with some parameter m which can be measured as a success or a failure, we can say that

X =

1 m =success

0 m =failure

(1)

Organizing our experiment, we see that we have a fixed number of trials, N , two measures classifying a success

and a failure, and a constant probability of success. Thus, we see that we can classify our experiment by a binomial

distribution! Using this fact, we can denote H to be a binomial random variable with parameters N and p such that

H ∼ B(N, p)

Thus let us explore the solution of finding this parameter p within the given problem of the dropping of needles.

This would allow us to perform manipulations to begin exploring the viability of the method to approximate π. The

proof which is given actually to show a solution to the problem avoids the route many solutions take, which embed

in them the issue of using the value of π in the solution and specifically in the distribution of variables within the

problem. And since we are curious to find the viability of this probabilistic approach to approximating π, we cannot

already know the value of π, which, had we considered a different approach would force us into a paradox. Hence, to

formally formulate this problem, consider the following:

Theorem 1. Given that a needle of length l is dropped unto an equally spaced rectangular tiled floor, with the distance

between the tiles being some distance d such that l < d, then the probability this needle crosses one of dividing lines of

the tiles is

p =
2

π

l

d
.

Proof. The proof of such a value can follow from a generalization made on the expectation of a randomly dropped

needle, the definition of which follows as such
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Definition 2.2. The expectation of a random variable X is defined to be [2]

E(X) =
∑
x

xP (X = x)

Hence, if a needle is dropped, regardless of it’s length with respect to that of the distance d of the rectangular tiled

floor, the expectation of the number of total crossings will be of the form

E = p1 + 2p2 + 3p3 + . . .+ npn

where pn denotes the probability of the needle of some length will cross an exactly n number of dividing lines. What

can be noted here is that the probability of which Buffon’s variation on the problem asks for is atleast a single crossing,

which is the sum

p = p1 + p2 + . . .+ pn

There is omission of cases where the needle randomly falls exactly upon a dividing line, or with one of it’s ends on the

dividing line, as these events have probability of zero. In addition, if the needle length is ’short’, or in other words,

it’s length is less than that of the distance d between the dividing lines, the probabilities pn for n > 1 all go to 0,

p2 = p3 = . . . = 0, hence producing an expectation E = p, reducing the problem to simply calculating this expectation.

To proceed further with the proof, it will be necessary to show what is called the linearity of the expectation, in

that specifically, E(X + Y ) = E(X) + E(Y ).

Theorem 2. Given random variables X and Y , along with some constant k ∈ R, we have that E(kX+kY )=kE(X)+

kE(Y ).

Proof. The proof for the above can be constructed as such,

Lemma 3. For some constant k and a given random variable X, it is true that E(kX) = kE(X).

Proof. It can be assumed that k 6= 0 as the statement becomes trivial for k = 0. From this, it can be said that by

definition of expectation,

E(kX) =
∑
x

P (kX = x)

= k
∑
x

(x
k

)
P (X =

x

k
)

letting ω = x
k , and as a result summing over ω, it is obtained that E(kX) = k

∑
ω ωP (X = ω) = kE(X) �

Further, we can show linearity of this expectation function by considering E(X+Y) for some random variables X
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and Y , such that

E(X + Y ) =
∑
x

∑
y

(x+ y)P (X = x ∩ Y = y)

=
∑
x

∑
y

xP (X = x ∩ Y = y) +
∑
x

∑
y

yP (X = x ∩ Y = y)

=
∑
x

x
∑
y

P (X = x ∩ Y = y) +
∑
y

y
∑
x

P (X = x ∩ Y = y)

and from this recognizing that
∑

y P (X = x ∩ Y = y) = P (X = x) and similarly
∑

x P (X = x ∩ Y = y) = P (Y = y),

we get

E(X + Y ) =
∑
x

x
∑
y

P (X = x ∩ Y = y) +
∑
y

y
∑
x

P (X = x ∩ Y = y)

=
∑
x

P (X = x) +
∑
y

yP (Y = y)

= E(X) + E(Y )

by definition. And hence, by Lemma 1, and the above, we have that the expectation is linear. �

Now the expectation as a function of the length l of the needle can be considered as E(l), such that, to make use

of the linearity of the expectation, l can be considered as a sum of two parts of the needle, l = x + y as can be seen

in Figure 1. Namely, consider now E(x), which is strictly monotone for x ≥ 0, hence producing some E(x) = kx,

where k = E(1) [3]. To investigate k more appropriately, consider dropping instead of straight needles, needles of any

closed-form shape, such as a polygon. Let any polygon, denoted by P , have a total length l, such that the total number

of crossings once dropped randomly is the sum of the number of crossings produced by the pieces which compose it,

giving an expectation of E = kl, by Theorem 2. Given this, now consider a circle, C, with some diameter of d, with

a length exactly equal to l = dπ. Assuming that this circle is now dropped unto the same equally spaced rectangular

tiles placed parallel to each other as such:

Figure 3: Diagram of Circles Dropped Unto given Surface

, it can be seen that it crosses atleast 2 dividing lines no matter the position dropped, such that EC = 2. Now
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assume, along with the circle, two polygons, Pi, and P i, one which inscribes, and the other circumscribes the circle C

respectively, with i denoting the number of are also dropped along side C as shown in Figure 4:

Figure 4: Diagram of Circles with Inscribing and Circumscribing Polygons Dropped Unto given Surface

It can be said that the expectations follow a relationship EPi ≤ EP i . Particularly, the relationship

EPi ≤ EC ≤ EP i

is true. However it should be noticed here that polygons Pi, and P i are merely approximations of C, such that if we were

to increase the number of sides of these polygons, they would produce continuously better an better approximations

of a perfect circle! So therefore we can say that

EPi ≤ EC ≤ EP i

lim
i→∞

l(Pi) ≤ dπ ≤ lim
i→∞

l(P i)

thus yielding, an expression for k,

k =
2

π

1

d

which is analogous to that of the general case for l, and where k is the probability of crossing, p, such that

p =
2

π

l

d
(2)

�

And thus we see that we have derived the solution for the probability of a needle intersecting the dividing lines

of parallel planks. So from here, we can perform numerous re-arrangements to conduct a further statistical and

probabilistic analysis to continue to try and answer the research question proposed earlier.
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3 Approximating π by Probability

As we have determined the parameter p of our random variable H we can do some basic algebraic re-arrangement to

see,

p =
2

π

l

d

⇔ π =
2

p

l

d
.

Thus showing clearly the connection between the probability p and π with a clear expression. Which then prompts the

question of in this re-arranged formula, how to make it such that we actually estimate p. Although a smart individual

may presume this probability may simply be the proportion of successes to trials, this is not initially mathematically

evident. And so we must undertake a quick proof to see how we may denote this parameter p. Hence we consider

a specific case of a an experiment with N = 8 trials, with some probability p of success and 1 − p of failure. Let

X denote the number of successes in this experiment such that X ∼ B(8, p). The probability distribution of such a

random variable can be given in terms of a binomial distribution, such that if X = 5

P (X = 5) =

(
8

5

)
p5(1− p)3.

meaning that the likelihood of a total of 5 successes occurring out of a total of N = 8 trials is proportional to p5(1−p)3

for some parameter p ∈ (0, 1). The following is the graph of observed as a result:

Figure 5: Graph of P (X = 8) with Varied p

It can be seen here clearly that the graph actually has a maximum as p varies! Infact, we see that this maximum

can be found by simply taking the derivative of this function and setting it equal to 0, methods familiar from early

calculus classes. In an attempt to generalize, let us then consider an m number of experiments, trials, with a fixed N

number of attempts, with a probability of p success. Further assume that these trials and attempts are independent

such that Xi ∼ B(N, p),i = 1, 2, 3, . . .. Thus consider the random variable Y representing the outcomes of all of

trials such that Y = (X1, X2, . . . , Xm). From properties of independent events, as also presented in the Mathematics

Analysis and Approches HL Booklet [2], it is known that

P (X = x ∩ Y = y) = P (X = x) · P (Y = y)
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allowing us to generalize in saying that for m such independent events, we get that namely P (Y = k), where k ∈ N

and x ∈ N denote the number of successes is simply

P (Y = k) = P

(
m⋂
i=1

Xi = xi

)
=

m∏
i=1

P (Xi = xi). (3)

Since we know that Y is a binomial random variable, we know that it’s probability distribution can be given by

P (Xi = xi) =

(
n

xi

)
pxi(1− p)n−xi

thereby giving, by substituting back into Equation (1) that

P (Y = k) =

m∏
i=1

(
n

xi

)
pxi(1− p)n−xi (4)

For sake of clarity, the new function in Equation (2) will be denoted a function of p and x such that

L(p, x) =

m∏
i=1

(
n

xi

)
pxi(1− p)n−xi (5)

As we also saw in the specific case, this function must have some local maxima on the interval p ∈ (0, 1) the proof

of which follows from the mean value theorem specifically. So we can now take the derivative of this function with

respect to the parameter p. This is important to find the p which allow for maximum probability of a number of

successes occurring. In order to make this process simpler, we may take the logarithm of L, log(L(p, x)). But what is

log(L(p, x))? Expanding L we get

L(p, x) =

(
n

x1

)
px1(1− p)n−x1 ·

(
n

x2

)
px2(1− p)n−x2 ·

(
n

x3

)
px3(1− p)n−x3 · . . . ·

(
n

xm

)
pxm(1− p)n−xm

So the logarithm of the mth term being

log

((
n

xm

)
pxm(1− p)n−xm

)
= log

((
n

xm

))
+ xm log(p) + (n− xm) log(1− p)

thus it follows that

L(p, x) =

(
log

((
n

x1

))
+ x1 log(p) + (n− x1) log(1− p)

)
+ . . .+

(
log

((
n

xm

))
+ xm log(p) + (n− xm) log(1− p)

)
L(p, x) =

m∑
i=1

log

((
n

xi

))
+ xi log(p) + (n− xi) log(1− p)

L(p, x) =

m∑
i=1

log

((
n

xi

))
+

m∑
i=1

xi log(p) +

m∑
i=1

(n− xi) log(1− p).

Which means that we can take the derivative, dL
dp such that

dL

dp
=

d

dp

m∑
i=1

log

((
n

xi

))
+

d

dp

m∑
i=1

xi log(p) +
d

dp

m∑
i=1

(n− xi) log(1− p)

dL

dp
= 0 +

m∑
i=1

xi
p
−

m∑
i=1

n− xi
1− p
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thus setting this equal to 0, we get that

m∑
i=1

xi
p
−

m∑
i=1

n− xi
1− p

= 0

(1− p)mx = p

m∑
i=1

(n− xi)

mx = pn ·m

p̂ =
x

n

And hence we see that the best parameter p given by p̂ is the number of total successes over an n number of attempts

attempt, as had been hinted at previously. Thus we see that for the specific case initially discussed, with a total of

n = 8 trials, and 5 successes, the maximum likelihood of 5 successes is this simply p̂ = 5
8 = 0.625. More importantly

however, we see that infact in the scenario Buffon’s problem, where we have H as successes and N as total number of

trials, we see that we can write the parameter p as p̂ = H
N , thus giving the maximum likelihood that a number of hits

occurs in successive independent trials.

Namely, we can substitute this value of p into Equation (1) such that we now get the relation

H

N
=

2

π

l

d
. (6)

We can again re-arrange this relationship, solving for π to see that

π ≈ 2l

d

N

H
. (7)

For some brief reflection on notation, the ≈ symbol is used here since π is known to be irrational an so it cannot be

represented as a ratio of two integer numbers. We could similarly choose to write p̂i, so as to indicate the approxima-

tion, which will be used from now on. Similarly, the equality, =, for p is used as writing p doesn’t assume a specific

ratio, but the limit as more and more needles are thrown.

So given that we have found some p̂ expression which maximizes the likelihood of a hit, we could examine in a

practical sense, given that we would get different H values for each trial of Buffon’s needle, how p̂ varies across these

trials. Consider performing Buffon’s needle across many trials, such that each trial has a certain N number of throws

and H number of hits associated with it. By using the formula in Equation (6) we could perhaps gain estimations on

π itself as was done previously. We can use a simulation [4], to perform this experiment! Performing these trials with

a constant N = 250 and l = d = 1 we could obtain a table such as this:
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Table 1: Table of Hits and Approximated π Values for 6 Trials

Trial (T) Hits
Approximate Value

of π

T1 155 3.2258

T2 156 3.2051

T3 168 2.9761

T4 170 2.9411

T5 160 3.1250

T6 161 3.1055

We can thus notice that each p̂ is different from the other, causing some error in the approximation of π. But how

big is this error on average? We could try subtracting such that we see the difference p̂ − p, but then we run into

the issue that perhaps negative values might cancel out the positive ones, and thus we could then try and square the

difference. Visually, we can think of this as the distance of one value from some known value. So say we wished to

find some parameters a, b such that we got a 1 : 1 relationship with a target equation, say ax+ b = 2x+ 5, but in this

case we have no idea what the target equation is.

Figure 6: Graph of Collected Sample Data (Black Dots) and Target Equation (Red)

Then, we could simply utilize the Pythagorean distance formula which says that the square of the distance, d

between two points is the sum in the change in the y, ∆y and x, ∆x [2]. So that we get

d2 = ∆y2 + ∆x2

such that we get the distance between a collected sample point and the true value, in other words, the error. And so

this actually works quite well, and thus we find that the squared error in each of our trials as such:
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Table 2: Table of Hits, Approximated π Values, and Squared Errors for 6 Trials

Trial (T) Hits
Approximate Value

of π (5 s.f)

Squared Error

(3 s.f)

T1 155 3.2258 7.09·10−3

T2 156 3.2051 4.03·10−3

T3 168 2.9761 2.73·10−2

T4 170 2.9411 4.01·10−2

T5 160 3.1250 2.75·10−4

T6 161 3.1055 1.29·10−3

But then again, we have conducted a total of 6 trials, and hence we could think of taking the average squared error

as a way of seeing how good the parameter p̂ is as a means of approximating π! Doing this process, we get namely

that the average squared error, e, is:

e =
7.09 · 10−3 + 4.03 · 10−3 + 2.73 · 10−2 + 4.01 · 10−2 + 2.75 · 10−4 + 1.29 · 10−3

6

e = 1.33 · 10−2

Attempting to generalize, we could survey an m number of trials each giving some parameter p̂m from a true p. Thus

the mth squared error being (p̂m − p)2, and hence the mth average square error as such:

e(p,m) =
(p̂1 − p)2 + (p̂2 − p)2 + . . .+ (p̂m − p)2

m

e(p,m) =
1

m

m∑
i=1

(p̂i − p)2

What is also curious in this process is also the fact that actually the bigger the error, un-squared, the bigger the squared

error. Which means that the average squared error, e gets much bigger. So perhaps outliers in a collected sample

would disproportionately effect the mean squared error, meaning that attempting to minimize it would ultimately fail

in a finite collected sample.

We actually further notice that here, we can utilize the definition of expectation, Definition 2.1, from earlier! In

fact, we get, by the definition of expectation, that the average squared error of the parameter p̂ is

e(p,m) = E
[
(p̂m − p)2

]
. (8)

Given that we have such a relationship, we can reflect back on the meaning of the statement itself. Well, we were

wishing to find out how exactly the value of this error varies across many trials, and for this we chose to examine the

average squared error. But perhaps we could make use of another statistical tool to our advantage. Therefore, let us

define the concept of variance,

Definition 3.1. The definition of the variance of a random variable is given by

V ar(X) = E[(X − µ)
2
] (9)
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where E[X] is the expectation and µ is the mean. This definition of variance applies for random variables which are

continuous and discrete.

From this definition we see that infact the definition of the error function e looks quite similar to this. So maybe

we could try and expand the contents of e and see what we get.

We have that e is given as:

e(p,m) = E
[
(p̂m − p)2

]
.

we can add and subsequently subtract a E[p̂], such that

e(p,m) = E
[
(p̂− E[p̂] + E[p̂]− p)2

]
and then expanding as such

e(p,m) = E
[
(p̂− E[p̂] + E[p̂]− p)2

]
= E

[
(p̂− E[p̂])

2
+ 2 (p̂− E[p̂]) · (E[p̂]− p) + (E[p̂]− p)2

]
.

And thus by the linearity of the expectation, or namely, Theorem 2 and Lemma 1, we have that

e(p,m) = E
[
(p̂− E[p̂])

2
]

+ E [2 (p̂− E[p̂]) (E[p̂]− p)] + E
[
(E[p̂]− p)2

]
= E

[
(p̂− E[p̂])

2
]

+ 2 (E[p̂]− p)E [p̂− E[p̂]] + (E[p̂]− p)2

= E
[
(p̂− E[p̂])

2
]

+ (E[p̂]− p)2

and by definition of variance, we get that

e(p,m) = V ar(p̂) + (E[p̂]− p)2 . (10)

Thus more specifically we notice that e can also be written as a function of the variance of the parameter p and an-

other term. This relationship works perfectly for our purposes, as we could theoretically, and as shown experimentally

previously, calculate the average squared error, e and thus attempt to minimize this error as much as possible. In

other words, by which methods can we realistically minimize e?

In a finite context, to provide an approximation means to have some, be it small or large, error, and within that

context, from Equation (9) we have seen that this error is equivalent to the variance of that same parameter. So to

minimize we can take the approach of actually just simply ridding ourselves of the extra term (E[p̂]− p)2, such that

(E[p̂]− p)2 = 0. We reserve the right to do this due to the fact that the parameter p̂ in this case actually is completely

unbiased, noticing that here (E[p̂]− p)2 is the bias term, in that it adds some bias to an otherwise un-biased parameter.

Going back to the context of the Buffon needle problem, and specifically Equation (6), we can write the difference of
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the approximated and true value as

π̂ − π =
2l

d

N

H
− 2l

d

1

p
=

2l

d

(
N

H
− 1

p

)
=

2l

d

(
1

p̂
− 1

p

)
. (11)

So we see that to find the average squared error in the estimation, e(p,m), as also outlined previously in Equation

(9), of π, π̂, we must take the variance of the term 2l
d

N
H . Thus, with the substitution of R = l

d that the variance is

V ar(π̂) = V ar

(
d

2l

H

N

)
= V ar

(
1

2R

H

N

)
=

1

(2NR)2
V ar(H)

=
1

2N2R2
Nπ(1− π)

=
π(1− π)

2NR

The V ar(H) term is calculated to be Nπ(1 − π), since we know H is a binomial random variable with parameters

N and p, the variance would be equivalent to Np(1 − p) where in this case p is π. Given that this estimation, π̂, is

unbiased, as also explained previously, then the variance of this estimation is equivalent to e(π,m) of π̂,

V ar(π̂) =
π(1− π)

2NR
= e(π,m). (12)

As also explained previously, choosing values of d and l such that their ratio l
d = 1 would give the most optimal

approximation the fastest. Thus we may choose l and d such that we have l = d = R = 1. And further yet, we may

choose to apply what is called the delta-method[5], [6], which gives us in the end

e(π) =
π2

N

(π
2
− 1
)
.

Thus by using the methods outlined previously, we had managed to obtain the average squared error of any experiment

one could choose to conduct using the Buffon needle experiment! Meaning that if we wanted to obtain an approximation

of π to a total of 3 decimal digits, or 4 significant figures, π = 3.141, we would obtain that the average squared error,

and as a consequence of Equation (10), the asymptotic variance in π̂ in an ever increasing asymptotic number of

experiments, m, would be roughly:

V ar(π̂) ≈ 5.628

N
(13)

However before proceeding to explore the extensions to the original Buffon problem, we can examine the nature of

this relationship. Say, what would happen if N →∞? Well, using some basic laws of limits, we see that infact

lim
N→∞

V ar(π̂) = 0.

Which makes quite a lot of sense if one actually thinks about throwing an infinite number of needles. If we throw an

infinite number of needles, we would be able to perfectly get the value of π. But since we cannot actually thrown an

infinite number of needles, the question of, at which extent of needles thrown, do we have a variance which can give

a reasonable approximation of π? Throwing N = 100 needles gives us

V ar(π̂) ≈ 5.628

100
≈ 0.0562
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and throwing N = 1000 needles

V ar(π̂) ≈ 5.628

1000
≈ 0.00562. (14)

And so we see that throwing N = 1000 needles gives a reasonable probability that we will be able to approximate

π to at least 2 decimal places. And the reason for this being a probability and not a certainty is that the average

squared error, is, as stated in it’s name, an average, so in finitely many throws, there will always be some outlier or

skew which means that this variance is in fact not a certainty. However, taking for example N = 10000 needles, is

not only computationally quite easy to compute for a computer, it gives a variance of roughly 5.628 · 10−4, quite low.

And again here it is not necessary to show this in powers of 10, but for the sake of understanding the true magnitude

of this many numbers, it is quite useful in order to quantify. So in sum by applying this method, we have found the

efficiency, or how fast we can approximate π to a reasonably accurate degree.

4 Variations of Buffon’s Needle

After publishing his original work on the now dubbed Buffon needle problem, other individuals wondered on how to

alter the problem to perhaps reach a more general answer. One of the most well known individuals was Pierre-Simon

de Laplace. He considered extending the grid, and considering a grid of lines spaced out by some distances a and b

which were perpendicular to each other. Figure 7 shows this:

Figure 7: Diagram of Laplace’s Extension

In this case, a solution to the problem was found by [7], using a paradoxical method, to be exactly

p =
2l(a+ b)− l2

πab
(15)

As in, this is the probability that given that a needle of length l is dropped unto two sets of equally spaced parallel

lines, of spacing length a and b, with l < a, b where one set is perpendicular to the other, the needle crosses one dividing

line across one set of parallel lines. We can actually notice some similarities in this solution to that of Buffon’s. Infact,

we could wonder, what would happen if say the distances for one set of dividing lines increased continuously? In other
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words, what would happen if a or b increased to infinity? Let’s try and compute the limit as a→∞.

lim
a→∞

(
2l(a+ b)− l2

πab

)
= lim

a→∞

(
2l(a+ b)

πab
− l2

πab

)
= lim

a→∞

(
2la+ 2lb

πab

)
− lim

a→∞

(
l2

πab

)
= lim

a→∞

(
2la

πab

)
+ lim

a→∞

(
2lb

πab

)
− lim

a→∞

(
l2

πab

)
= lim

a→∞

(
2l

πb

)
+ lim

a→∞

(
2l

πa

)
− lim

a→∞

(
l2

πab

)
=

2l

πb
.

So infact, Buffon’s problem is actually a limiting case of Laplace’s variation! Although this is very intriguing, what

insight does it give into approximations of π? Well, as we have seen with Buffon’s problem, we can conduct a similar

statistical analysis on this variation of Buffon’s problem too. We follow the same procedure of re-arrangement, calcu-

lating the variance to find the average squared error, and applying the delta method to find the asymptotic variance

which in turn, given that we plug in a value of π say π = 3.141 to which we want to approximate to, we can find the

general efficiency, as we did with Buffon’s solution.

We can think to even further generalize this approach. Perhaps we could consider including 3 sets of lines in our

grid. This would result in some sort of polygonal pattern, and a visualization can be drawn as such:

Figure 8: Diagram of the Triple Grid Variation

And so as we can see in Figure 8 that we have the ’triple grid’ variation of the problem, with needles in blue, and

the length l of the needles indicated in red. The dashed lines indicate that the pattern in the solid black lines continue

indefinitely.

And so we may choose to repeat the process again for this variation as well, giving a relation for the average squared

error of the approximation. So we may actually spot a certain pattern forming here, where we continuously add

more and more sets of grid lines. So infact here the question of what actually would happen to the efficiency of the

approximation as we add more and more grid lines could be posed. Or rather more formally, would adding more and
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more grid lines, yield better approximations of π than by keeping the set of grid lines at a minimum? So if we were

to denote the number grid lines by M , would it be true that for some constants c1 < c2 where c1, c2 ∈ N

lim
M→c1

V ar(π̂) < lim
M→c2

V ar(π̂) (16)

at some finite N? Which could also be generalized to the question of whether or not for some constant ci ∈ N, such

that ci > ci−1, ci−2, . . . , c2, c1

lim
M→c1

V ar(π̂) < lim
M→c2

V ar(π̂) < . . . < lim
M→ci

V ar(π̂) (17)

And this is mainly for some finite, and not infinite ci, since we are interested in the computational feasibility of such a

calculation, and thus we cannot truly work with infinities. So we see that by performing a set procedure of statistical

analysis and attempting to generalize the original Buffon’s variation, we get the extent to which these probabilistic

methods and problems can approximate π to a ’reasonable’ degree. But, then again, what is a ’reasonable’ degree? I

have been using this term and it’s synonyms to quantify the accuracy of an approximation, yet these terms are very

loosely defined. So perhaps this could mean, even in a more general context outside this specific investigation, a ’fast’

and ’significant’ approximation. So that it’s fast in that with a few trials, a ’significant, or, to a couple decimal places

can be achieved.

So therefore, there is left only another avenue of investigation within which we could into, and more specifically

manipulations of these probabilistic experiment to give possible well-known generators of π to an accurate degree,

which would also provide a very thorough contribution to the investigation at hand.

5 Conclusion

We started with a simple yet quite elegant problem in which we considered dropping a needle on a surface with a set

of parallel lines equally spaced from one another. We managed to provide a solution to the problem of finding the

probability of a random needle crossing at least a single dividing line on the surface, noticing that in this result was

π! We used this result to begin to ponder the research question regarding the viability of actually using some sort

of numerical approximation by simply re-arranging the equation to solve for π. Using some calculus techniques and

observations, we managed to find an expression for the probability p such that the probability of a needle hitting a

dividing line was maximised. From here, a statistical analysis involving the average squared error and the variance of

the approximations from data collected of π was conducted to arrive in Equation (13)

V ar(π̂) =
5.628 . . .

N
.

After this observation, an extension in the form of an increasing number of sets of dividing lines was proposed, ending

with a conjecture that increasing the number of dividing lines, M , to some ci > ci−1, ci−2, . . . , c2, c1 would actually

give a faster and better approximation for π.

Although the analysis conducted did serve to answer the research question quite thoroughly, it still leaves room

for gaps. Namely, a notable reference and subsequent analysis to past literature, through the work of Italian mathe-
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matician Lazzarini [8] can be commented upon. This is such that perhaps by manipulating the values of d and l, we

may obtain possible generators of well-known approximations to π, such as π ≈ 355
113 , as was the case for Lazzarini’s

experiments. Though given the fact of the sheer number of possible needles that can be thrown and also hits recorded,

we may think that this result is quite extraordinary. We can quickly gain an insight as to the true probability of such

a result being obtained by utilizing Equation (13), since we can simply substitute N = 3408 to obtain

V ar(π̂) =
5.628

N
⇒ 5.628

3408
≈ 0.00165 (18)

Thus meaning that at best, π can be approximated to roughly 3-4 decimal places, which the approximation of Lazzarini

surpasses by a whole 2-3 decimal places, putting into great question his result.

However, the question of whether or not Lazzarini actually performed this experiment is not really important, but

rather the method of choosing l and d to give these well-known approximations. It is not impossible that these ratios

arise themselves out of natural experimental methods, since it is the viability of obtaining a good approximation of

π we are investigating, these ratios are simply a few out of the many many possibilities which could occur. Thus

stumbling on these few ratios would actually be quite comparable to attempting to find a needle in a haystack.

Further yet, I also thought of extending this problem of Buffon’s needle even further. Namely, what would hap-

pen if we were to consider ’dropping’ a needle in a 3 dimensional space? So basically by considering how would these

spaces would look like, what would the resulting probability be? I think this could be a very interesting extension to

make to the problem, and to conduct a subsequent statistical analysis upon. Also, perhaps analysing the cases where

the length of the needle is such that l > d could also be examined for the original problem and it’s extensions.

In general however, we see that these probabilistic methods of approximating π can be used to approximate π to

a very decent error difference. Especially with the computational power the average layman possess, this process

can be automated such that the experiment is conducted indefinitely to observe approximated values of π. Methods

similar to that of Lazzarini, where the length of the needle and the spacing between parallel planks are manipulated in

order to have the possibility of producing known rational fraction approximations of π, are valid to the extent that the

values for N and H are recorded for every experiment conducted, and are indeed random. Thus we can conclusively

conclude that although yes, these probabilistic methods can be used to approximate π, they would require a great

number of needles thrown, to even achieve a degree of approximation to say 4 decimal places. Although, by using

different variations of the problem, it could be feasible that an decent approximation can be obtained with only a few

hundred needles.
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